Занимательная микроэлектроника — страница 44 из 117



Рис. 9.2.Схема звуковой сигнализации с динамиком на выходе


Коллекторное напряжение насыщения транзистора КТ972 (это транзистор с «супербетой», см. главу 3) составляет около 1,5 В, поэтому при питании от источника 5 В звук может быть достаточно тихим. Вместо динамика можно поставить пьезоэлектрический звуковой излучатель, тогда подойдет маломощный транзистор с обычным коэффициентом передачи. А вот о пьезоэффекте мы сейчас подробнее и поговорим.


Кварцевые резонаторы

Точность поддержания частоты в схемах по рис. 9.1 невысока. Частота «уходит» примерно на 10–20 % при изменении напряжения питания от 5 до 15 В и в достаточно большой степени зависит от температуры (высокостабильные резисторы и конденсаторы здесь не помогут и потому нецелесообразны). Чтобы избавиться от этого, необходимо использовать кварцевый резонатор (в просторечии — просто кварц). На кварцах работают все бытовые электронные часы, и вообще в любом современном бытовом электронном устройстве вы обязательно найдете кварц и иногда не один.

Подробности

Вкратце принцип работы кварца заключается в следующем: если приложить к кварцевому параллелепипеду, выпиленному из целого кристалла в определенной ориентации относительно его осей, напряжение, то кристалл деформируется (очень не намного, но все же достаточно, чтобы на этом принципе даже делать прецизионные манипуляторы, например, для электронных микроскопов). Это т. н. обратный пьезоэффект, имеет место и прямой — если такой кристалл деформировать, то у него на гранях появляется разность потенциалов. Получается, что если мы включим такой кристалл в схему с обратной связью, то она начнет генерировать, причем частота генерации будет зависеть исключительно от размеров кристалла — и ни от чего больше!

Как, спросите вы, даже от температуры не будет зависеть? Да от нее же зависит вообще все на свете — и геометрические размеры в первую очередь! Вот именно— пьезоэлектриков, как называют вещества, ведущие себя подобно кварцу, много, но используют именно кварц, так как он, помимо пьезоэлектрических свойств, обладает еще и одним из самых низких температурных коэффициентов расширения. В результате кварцевые генераторы без каких-либо дополнительных ухищрений обеспечивают нестабильность частоты порядка 10-5, т. е. уход часов с таким генератором составляет не более 1 секунды в сутки. Именно распространение кварцевых генераторов привело к тому, что все измерения сейчас стараются свести к определению интервалов времени. Причем природа преподнесла здесь и еще один подарок: поскольку сам кварц является полным изолятором, то токов никаких через него не течет, и кварцевые генераторы в сочетании с КМОП-микросхемами почти не потребляют энергии.


Почти все кварцевые генераторы в микроэлектронной технике строят по одной и той же схеме, которая очень проста и требует всего одного инвертора, резистора и двух конденсаторов (рис. 9.3).



Рис. 9.3.Схема кварцевого генератора на КМОП-инверторе


Параметры элементов можно менять в довольно больших пределах— так, емкость конденсаторов может меняться от 20 до 200 пФ (причем они не обязательно должны быть одинаковыми), а сопротивление резистора — от 100 кОм до 10 МОм. Однако целесообразнее выбирать как можно меньшие емкости и как можно большие сопротивления, иначе возрастает потребление от источника питания. Иногда для дополнительного снижения потребления последовательно с кварцем со стороны выхода инвертора ставят еще один резистор в несколько сотен килоом. Естественно, инвертор при таких сопротивлениях может быть только КМОП-типа (ТТЛ-генераторы с кварцевым возбуждением строят по иным схемам). Частота кварца снизу практически не ограничена (для низких частот обычно употребляют т. н. часовой кварц с частотой 32 768 Гц), верхний же предел при использовании серии CD4000B ограничивается 1 МГц. Для более высоких частот потребуются быстродействующие КМОП-серии 74АС и 74НС (К1564). В качестве инвертора, естественно, пригоден и многовходовой логический элемент с объединенными входами.

Кварцы выпускают на определенные частоты, причем если нужна повышенная точность, то можно приобрести специализированные очень стабильные резонаторы с погрешностью до 10-7, выпускаются и готовые генераторы на разные частоты (особенно большой выбор предлагает в этом отношении фирма, название которой обычно ассоциируется совсем с другими продуктами — Epson, приобретшая в свое время компанию, известную своей часовой торговой маркой Seiko). Установив вместо одного из постоянных конденсаторов подстроечный, частоту можно в очень небольших пределах (порядка 0,01 % от номинала) менять, но сейчас этим почти никто не пользуется, т. к. подстройку лучше осуществить цифровым способом, или просто приобрести высокостабильный кварц.

Заметки на полях

Мало кто знает, что в случае если под рукой нет подходящего кварца, то схему на рис. 9.3 вполне можно «завести», просто заменив резонатор на малогабаритную индуктивность. Частоту можно грубо прикинуть, если учесть, что постоянная времени LC-контура равна √LC. Если в качестве величины С подставить сумму емкостей обоих конденсаторов, то частота будет примерно равна единице, деленной на удвоенную величину вычисленной постоянной времени. Естественно, главное преимущество кварца— высокая стабильность— при этом пропадет, зато могут резко снизиться габариты, т. к. кварцевые резонаторы далеко не всегда отличаются миниатюрностью, а серийно выпускаемые индуктивности обычно не крупнее малогабаритного резистора мощностью 0,125 Вт.


Формирователи импульсов

Большое значение на практике имеют формирователи коротких импульсов, называемые еще «схемами выделения фронтов». На рис. 9.4, и приведена схема, которая делает это, как положено. При поступлении положительного фронта на вход он сразу же переключает выход последнего элемента «И-НЕ» в состояние логического нуля. На выходе цепочки из трех инверторов также возникнет «0», который вернет выход в состояние «1», но это произойдет не сразу, а спустя время, равное утроенной задержке срабатывания логических элементов. Поэтому на выходе возникнет короткая «иголка», длительность которой достаточна (задержка-то тройная!) для надежного срабатывания других элементов схемы. (Для КМОП длительность этого импульса составит несколько сотен наносекунд.) При желании можно выделить не фронт, а спад импульса (и получить при этом на выходе «иголку» положительной полярности), для этого потребуются элементы «ИЛИ-HE». А если использовать «Исключающее ИЛИ», то можно получать положительные импульсы при каждом переключении сигнала — и по фронту, и по спаду.

Замечание

В интуитивно понятном термине «фронт импульса» имеется некоторая неоднозначность, связанная с тем, что этим термином иногда обозначают только положительный перепад напряжения (т. е. переход из состояния «0» в «1»), чтобы отличить его от отрицательного (перехода из состояния «1» в «0»), который тогда называют «спадом импульса». В западной литературе соответствующие термины звучат, как «rising edge» и «falling edge» (буквально: «возрастающая кромка» и «падающая кромка»), что более соответствует смыслу.

Подобно тому, как термин «отрицательный перепад» отнюдь не означает наличия отрицательного напряжения относительно «земли», так и «полярность сигнала» в приложении к логическим уровням часто означает не полярность напряжения относительно той же «земли», а просто состояние логической единицы (положительный сигнал, высокий уровень) или логического нуля (отрицательный сигнал, низкий уровень).

Все здорово, но схема уж больно громоздкая для такой простой функции — целый корпус! На рис. 9.2 у нас был один корпус для какого сложного устройства, а тут — всего только выделение фронта. К тому же такие короткие импульсы очень сложно наблюдать на осциллографе. Поэтому на рис. 9.4, б и в приведены гораздо более экономичные схемы, которые делают то же самое, но неправильно. Почему неправильно? Потому что разработчики микросхем не рекомендуют использовать аналоговые узлы для построения цифровых схем. Вообще говоря, схемы генераторов (см. рис. 9.1) и одновибраторов (см. рис. 9.5) — тоже неправильные. Но они широко применяются, и нет причин для того, чтобы на тех же принципах не построить схемы выделения фронтов. Длительность импульса на выходе приведенных схем при указанных номиналах составит около 10 мкс.

Заметки на полях

В схемах генераторов на рис. 9.1 установлен дополнительный резистор (R2), ограничивающий ток через защитные диоды микросхемы. Дифференцирующая RC-цепочка, которая составляет основу этих схем, вырабатывает импульсы не только по нужному переключению сигнала, но и по противоположному, и при этом импульсы выходят за пределы питания, в чем вы можете убедиться, если взглянете на рис. 2.10. Здесь также применяется этот прием и потому в схемах на рис. 9.4, б и в установлены необязательные ограничительные резисторы 1 кОм. Замечу, что во всех этих схемах (и в мультивибраторах, и в одновибраторах далее) можно обойтись и без токоограничивающих резисторов — как мы знаем, у диодов достаточно высокая перегрузочная способность, если только они не перегреваются. Обычно в мультивибраторах резистор ставят, т. к. они работают непрерывно, а в схемах выделения фронтов и одновибраторах, рассчитанных на периодическое срабатывание, опускают. В них такой резистор целесообразен лишь при больших выдержках времени, т. е. при низких частотах, когда емкость конденсатора времязадающей цепи велика.



Рис. 9.4. Схемы формирователей импульсов:

а — стандартная схема формирователя коротких импульсов; б, в — схемы с использованием дифференциальных RC-цепочек; г — схема задержки


А на рис. 9.4,